THE ARITHMETIC OF POLYNOMIALS IN A GALOIS FIELD

By Leonard Carlitz*

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY

Communicated December 30, 1930

- 1. Let p be any prime (including 2) and π any positive integer; let $GF(p^{\pi})$ be the Galois field of order p^{π} . We define $\mathfrak{D}(p^{\pi}, x)$ as the totality of polynomials in an indeterminate, x, with coefficients in the $GF(p^{\pi})$. In this paper we consider some of the arithmetic properties of the polynomials in \mathfrak{D} .
- 2. If M is a polynomial in \mathfrak{D} , $sgn\ M$ is the coefficient of the highest power of x; if $sgn\ M = 1$, M is primary. If M is of degree μ , M by definition $p^{\pi\mu}$. Now the number of primary polynomials of degree μ is $p^{\pi\mu}$. Accordingly we define the ζ -function in \mathfrak{D} by

$$\zeta(s) = \sum_{F} \frac{1}{|F|^{s}} = \prod_{P} \left(1 - \frac{1}{|P|^{s}}\right)^{-1}$$
 (s > 1),

F running over all primary polynomials, P over all primary irreducible polynomials. It is easily verified that

$$\zeta(s) = \frac{1}{1 - p^{\pi(1-s)}}.$$

3. We now define a number of numerical functions of a primary argument F (except (vi) which is of a different nature)

$$\mu(1) = 1, \ \mu(F) = 0 \text{ for } P^2 \mid F,$$

$$\mu(F) = (-1)^p, \text{ for } F = P_1 \dots P_p,$$
(i)

 P_i irreducible and distinct.

$$\lambda(1) = 1,$$
 (ii)
$$\lambda(F) = (-1)^{\alpha_1 + \dots + \alpha_{\rho}} \text{ for } F = P_1^{\alpha_1} \dots P_{\rho}^{\alpha_{\rho}}$$

$$\tau(F)$$
 is the number of primary divisors of F (iii)

 $\sigma(F)$ is the sum of the absolute values of the primary divisors of F: (iv)

$$\sigma(F) = \sum_{D \mid F} |D|$$

 $\varphi(F)$ is the number of polynomials of degree less than F that are prime to F. (v)

 $Q(\nu)$ is the number of primary polynomials of degree ν that are not divisible by the square of an irreducible polynomial. (vi)

4. By making use of the connection between these functions and $\zeta(s)$ we deduce the following results very easily.

$$\sum_{\deg F = \nu} \mu(F) = 0 \quad \text{for } \nu \ge 2, \tag{i}$$

$$\sum_{\deg F=1} \mu(F) = -p^{\pi}$$

$$\sum_{\deg F = \nu} \lambda(F) = (-1)^{\nu} p^{\pi[(\nu+1)/2]},$$
 (ii)

where $[\alpha]$ is the greatest integer $\leq \alpha$.

$$\sum_{\deg F = \nu} \tau(F) = (\nu + 1) p^{\pi \nu}.$$
 (iii)

$$\sum_{\deg F = \nu} \sigma(F) = p^{\pi\nu} \frac{p^{\pi(\nu+1)} - 1}{p^{\pi} - 1}.$$
 (iv)

$$\sum_{\deg F = \nu} \varphi(F) = p^{2\pi\nu} - p^{\pi(2\nu - 1)}. \tag{v}$$

$$Q(\nu) = p^{\pi\nu} - p^{\pi(\nu - 1)}$$
 for $\nu > 1$, (vi)

 $Q(1) = p^{\tau}$

These formulas are the analogs of well-known asymptotic formulas in the rational field.

5. We now give a theorem of reciprocity of index $p^* - 1$. Define $\{A/P\}$ as that element of $GF(p^*)$ such that

$$\left\{\frac{A}{P}\right\} \equiv A^{(|P|-1)/(p^{\pi}-1)}, \ mod \ P, \ \ P \ not \ dividing \ A.$$

Then if P and Q are primary and prime to each other

$$\left\{\frac{Q}{P}\right\} = (-1)^{\rho \nu} \left\{\frac{P}{Q}\right\},\tag{1}$$

 ρ,ν being the degrees of Q, P, respectively.

From this Dedekind's theorem of quadratic reciprocity¹ follows as a special case.

6. The proof of (1) depends on three lemmas. Define R(A/P) as the remainder in the division of A by P.

Lemma 1. (Analog of Gauss' Lemma.) If H run through the primary polynomials of degree $\langle v, \rangle$

$$\left\{\frac{A}{P}\right\} = \prod_{H} \operatorname{sgn} R\left(\frac{AH}{P}\right).$$

Lemma 2. If A is primary of degree $\alpha \geq \nu$, and is not a multiple of P,

$$sgn \Pi(A - KP) = (-1)^{\alpha - \nu} sgn R\left(\frac{A}{P}\right),$$

the product extending over all primary K of degree $\alpha - \nu$.

Lemma 3. If H runs through the primary polynomials of degree $\langle v, \rangle$

$$sgn_{H,K}^{\Pi}(HQ-KP) = (-1)^{\rho\nu + Min. (\rho^2, \nu^2)} sgn_{H}^{\Pi} R\left(\frac{HQ}{P}\right).$$

- 7. A paper containing a detailed account of the above results, as well as a number of generalizations, has been offered to the *American Journal of Mathematics*.
 - * NATIONAL RESEARCH FELLOW.
 - ¹ Cf. Dedekind, R., J. für. Math., 54 (1857), pp. 1-26.

THE COLORING OF GRAPHS1

By Hassler Whitney

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY

Communicated January 14, 1931

- 1. Introduction.—We shall give here an outline of a study of the numbers m_{ij} appearing in a formula for the number of ways of coloring a graph. The details will be given in several papers. The definitions and results in a paper on Non-separable and Planar Graphs will be made use of.
- 2. The Number of Ways of Coloring a Graph.—Suppose we assign to each vertex of a graph a color in such a way that each pair of vertices joined by an arc are of different colors. (A graph containing a 1-circuit cannot be colored therefore.) We obtain thereby a permissible coloring of the graph. Given a graph G, let m_{ij} be the number of subgraphs of rank i and nullity j. Then the number of ways of coloring G in λ colors is

$$P(\lambda) = \sum_{i} \lambda^{v-i} \sum_{j} (-1)^{i+j} m_{ij} = \sum_{i} m_{i} \lambda^{v-i},$$

if G contains v vertices. This result, first found by Birkhoff,² is proved by a simple logical expansion.³

We note that, if G contains E arcs,

$$m_{i0} + m_{i-1, 1} + \ldots + m'_{0i} = {E \choose i}.$$

Let G' be formed from G by dropping out the arc ab. Let $m'_{ij}(a \times b)$ be the number of subgraphs of rank i, nullity j, of G' in which a and b are in different connected pieces. Put